Numeric Response Questions

Differential Equations

- Q.1 If m and n are order and degree of the equation $\left(\frac{d^2y}{dx^2}\right)^3 + 4 \cdot \frac{\left(\frac{d^2y}{dx^2}\right)^3}{\frac{d^3y}{dx^3}} + \frac{d^3y}{dx^3} = x^2 1$, then find value of m + n.
- Q.2 If the slope of the curve $y = \frac{ax}{b-x}$ at the point (1,1) is 2, then find the value of a + b.
- Q.3 Find the degree of differential equation $[1 + 2(y')^2]^{32} = 5y$.
- Q.4 If $xdy = ydx + y^2dy$ and y(1) = 1 then find the value of y(-3).
- Q.5 If $\phi(x) = \phi'(x)$, $\phi(1) = 2$ and $\phi(3) = ke^2$ then find k.
- Q.6 Equation of the curve passing through the point (1,2) such that the intercept on the x-axis cut off between the tangent and origin is twice the abacissa is given by xy = k then find k.
- Q.7 Find the order of the differential equation, whose general solution is $y = c_1 e^2 + c_2 e^{2 s} + c_2 e^{3x} + c_4 e^{x+\varepsilon_3}$, (where c_1, c_2, c_3, c_4, c_5 are arbitrary constants)
- Q.8 Find the sum of order and degree of differential equation of all tangent lines to the parabola $x^2 = 4y$.
- Q.9 Equation of curve through (2,2) satisfying $(1-x^2)\frac{dy}{dx} + xy = 5x$ is $(y-5)^2 + k(1-x^2) = 0$ then find k.
- Q.10 The slope at any point of a curve y = f(x) is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1,1). The equation of the curve is $y = x^n + 2$ then find n.
- Q.11 The solution of $\frac{dy}{dx} + \frac{y}{(1+x^2)} = \frac{e^{\tan^{-1}x}}{1+x^2}$ is $e^{k\tan^{-1}x} + 2c$ then find k.
- Q.12 The solution of the differential equation $(2x 10y^3)\frac{dy}{dx} + y = 0$ is $xy'' = 2y^m + C$ then find n + m.
- Q.13 The solution of $\frac{dy}{dx} = \frac{6x^2}{(2y+\cos y)}$, y(1) = 0, is $y^2 + \sin y = kx^3 2$ then find k.
- Q.14 If the integral factor of equation $(x^2 + 1)\frac{dy}{dx} + 2xy = x^2 1$, is $x^2 + k$ then find k.
- Q.15 The equation of the curve through the point (3,2) and whose slope is $\frac{x^2}{y+1}$, is $\frac{y^2}{2} + y = \frac{x^3}{3} k$ then find k.

ANSWER KEY

1.5.00

2.3.00

3. 2.00

4.3.00

5. 2.00

6. 2.00

7.3.00

8. 3.00

9. 3.00

10. 3.00

11.2.00

12. 7.00

13. 2.00

14. 1.00

15. 5.00

Hints & Solutions

1. The given differential equation can be

$$\left(\frac{d^2y}{dx^2}\right)^5 \frac{d^3y}{dx^3} + 4\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{d^3y}{dx^3}\right)^2$$
= $(x^2 - 1) \frac{d^3y}{dx^3}$

$$\Rightarrow$$
 m = 3, n = 2

We have, $y = \frac{ax}{b-x}$ 2.

$$\Rightarrow \frac{dy}{dx} = \frac{(b-x)a - ax \cdot (-1)}{(b-x)^2} = \frac{ab}{(b-x)^2}$$

$$\therefore \left[\frac{dy}{dx} \right]_{(1,1)} = \frac{ab}{(b-1)^2} = 2 \text{ (given)} \qquad \dots \text{(i)}$$

Since the curve passes through the point

$$1 = \frac{a}{b-1} \Rightarrow a = b-1$$

On putting a = b - 1 in equation (i), we

$$\frac{(b-1)b}{(b-1)^2} = 2 \implies b = 2$$
. $\therefore a = 2-1 = 1$

Hence, a = 1, b = 2

3. Do yourself

$$4. \qquad \int \frac{y \, dx - x \, dy}{y^2} = \int -dy$$

$$\frac{\mathbf{x}}{\mathbf{y}} = -\mathbf{y} + \mathbf{c}$$

As,
$$y(1) = 1$$

$$1 = -1 + c$$

$$\Rightarrow \frac{x}{y} = -y + 2$$

If
$$x = -3$$

If
$$x = -3$$

- $3 = -y^2 + 2y$

$$\Rightarrow y^2 - 2y - 3 = 0$$

$$\Rightarrow$$
 y = 3

5. $\phi(x) = \phi'(x) \implies \frac{\phi'(x)}{\phi(x)} = 1$

$$\Rightarrow \log \phi(x) = x + \log C \Rightarrow \phi(x) = Ce^{x}$$

Putting
$$x = 1$$
, $\phi(1) = 2$, we get $C = \frac{2}{e}$

$$\therefore \phi(\mathbf{x}) = 2 e^{\mathbf{x}-1} \Rightarrow \phi(3) = 2 e^2$$

6. equation of tangent

$$Y - y = \frac{dy}{dx} (X - x)$$

$$\therefore x - y \frac{dx}{dy} = 2x$$

$$\int \frac{dy}{y} = -\int \frac{dx}{x}$$

7. Rewriting the given general solution, we

$$y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x} + c_4 e^x \cdot e^{c_5}$$

$$= (c_1 + c_4 \cdot e^{c_5}) e^x + c_2 e^{2x} + c_3 e^{3x}$$

$$= c_1' e^x + c_2 e^{2x} + c_3 e^{3x}$$

Where $c'_1 = c_1 + c_4.e^{c_5}$.

So there are 3 arbitrary constant associated with different terms. Hence the order of the differential equation formed, will be 3.

8.
$$y = mx - am^{2}$$

$$\Rightarrow y = mx - m^{2}$$

$$\Rightarrow y' = m$$

$$\Rightarrow y = y'x - (y')^{2}$$

9.
$$\frac{dy}{dx} + \frac{x}{1-x^2}y = \frac{5x}{1-x^2} \text{ whose solution is}$$
$$y.e^{\int \frac{x^2}{1-x^2} dx} = \int \left(\frac{5x}{1-x^2}\right) I.F. dx + c$$

10.
$$\frac{dy}{dx} = 3x^{2}$$

$$y = 3\frac{x^{3}}{3} + c \qquad \Rightarrow y = x^{3} + c$$
It passes through (-1, 1)
$$1 = -1 + c \qquad \Rightarrow c = 2$$
Hence equation of curve is $y = x^{3} + 2$

11.
$$\frac{dy}{dx} + \frac{y}{(1+x^2)} = \frac{e^{\tan^{-1}x}}{1+x^2}$$
Multiplying both sides I.F. and integrating
$$ye^{\tan^{-1}x} = \int \frac{e^{\tan^{-1}x}}{(1+x^2)} e^{\tan^{-1}x} dx + c$$

Put
$$e^{\tan^{-1}x} = t$$
, $\frac{e^{\tan^{-1}x}}{1+x^2} dx = dt$
 $\Rightarrow ye^{\tan^{-1}x} = \int t dt + c = \frac{t^2}{2} + c$
 $\Rightarrow 2 ye^{\tan^{-1}x} = e^{2\tan^{-1}x} + 2c$

12.
$$y \frac{dx}{dy} + 2x = 10y^{3}$$

$$\Rightarrow \frac{dx}{dy} + \frac{2x}{y} = 10y^{2}$$
I.F.
$$= e^{\int_{y}^{2} dy} = y^{2}$$

$$x.y^{2} = \int 10y^{4} dy$$

$$\Rightarrow xy^{2} = 2y^{5} + c$$

13.
$$\int (2y + \cos y) \, dy = \int 6x^2 \, dx$$

$$\frac{dy}{dx} + \frac{2x}{x^2 + 1}y = \frac{x^2 - 1}{x^2 + 1}$$
Comparing with $\frac{dy}{dx} + Py = Q$, $P = \frac{2x}{x^2 + 1}$

I.F. =
$$e^{\int Pdx}$$
 = $e^{\int \frac{2xdx}{1+x^2}}$ = $e^{\ln(1+x^2)}$ = $1+x^2$

15.
$$\frac{dy}{dx} = \frac{x^2}{y+1}$$

$$\Rightarrow \int (y+1)dy = \int x^2 dx$$

$$\Rightarrow \frac{y^2}{2} + y = \frac{x^3}{3} + C$$
It passes through (3, 2) so $c = -5$

$$\therefore \text{ Required curve is } \frac{y^2}{2} + y = \frac{x^3}{3} - 5$$